External definability and groups in NIP theories

نویسندگان

  • Artem Chernikov
  • Anand Pillay
  • Pierre Simon
چکیده

We prove that many properties and invariants of definable groups in NIP theories, such as definable amenability, G/G00, etc., are preserved when passing to the theory of the Shelah expansion by externally definable sets, Mext, of a model M . In the light of these results we continue the study of the “definable topological dynamics” of groups in NIP theories. In particular we prove the Ellis group conjecture relating the Ellis group to G/G00 in some new cases, including definably amenable groups in o-minimal structures.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Coherence and Uniform Definability of Types Over Finite Sets

We define a notion of a coherent theory, and show that it is sufficient to imply uniform definability of types over finite sets (UDTFS). This gives additional information on the NIP ↔ UDTFS conjecture, discussed in [3] and [1]. We show that dp-minimal theories are coherent in their minimal formulas.

متن کامل

Generically stable and smooth measures in NIP theories

We formulate the measure analogue of generically stable types in first order theories with NIP (without the independence property), giving several characterizations, answering some questions from [9], and giving another treatment of uniqueness results from [9]. We introduce a notion of “generic compact domination”, relating it to stationarity of Keisler measures, and also giving group versions....

متن کامل

Pseudofinite groups with NIP theory and definability in finite simple groups

We show that any pseudofinite group with NIP theory and with a finite upper bound on the length of chains of centralisers is soluble-by-finite. In particular, any NIP rosy pseudofinite group is soluble-by-finite. This generalises, and shortens the proof of, an earlier result for stable pseudofinite groups. An example is given of an NIP pseudofinite group which is not soluble-by-finite. However,...

متن کامل

When Does Nip Transfer from Fields to Henselian Expansions?

Let K be an NIP field and let v be a henselian valuation on K. We ask whether (K, v) is NIP as a valued field. By a result of Shelah, we know that if v is externally definable, then (K, v) is NIP. Using the definability of the canonical p-henselian valuation, we show that whenever the residue field of v is not separably closed, then v is externally definable. We also give a weaker statement for...

متن کامل

Stability, NIP, and NSOP; Model Theoretic Properties of Formulas via Topological Properties of Function Spaces

We study and characterize stability, NIP and NSOP in terms of topological and measure theoretical properties of classes of functions. We study a measure theoretic property, ‘Talagrand’s stability’, and explain the relationship between this property and NIP in continuous logic. Using a result of Bourgain, Fremlin and Talagrand, we prove the ‘almost and Baire 1 definability’ of types assuming NIP...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:
  • J. London Math. Society

دوره 90  شماره 

صفحات  -

تاریخ انتشار 2014